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ABSTRACT 

This research first develops a descriptive model that is capable of capturing the inherent non-lane-

based traffic behavior characteristics of bicycles. To that end, the research team expands upon the 

existing Fadhloun-Rakha bicycle-following longitudinal motion model by complementing it with 

a lateral motion strategy, thus allowing for overtaking maneuvers and lateral bicycle movements. 

For the most part, the following strategy of the FR model remains valid for modeling the 

longitudinal motion of bicycles except under the conditions of the collision avoidance strategy, 

which are modified in order to allow for overtaking when possible. The proposed methodology is 

innovative in that it makes use of the intersection of certain pre-defined regions around the bicycles 

to decide on the feasibility of angular motion as well as its direction and magnitude. The resulting 

model is the first point-mass dynamics-based model to describe the longitudinal and lateral 

behavior of bicycles in both constrained and unconstrained conditions. In fact, by having the FR 

bicycle-following model as both the governing module of longitudinal behavior and a dynamic 

lateral module, the proposed model is able to model bicyclist behavior variability. Furthermore, 

given that the longitudinal logic used in the model was previously validated against experimental 

cycling data, it is the only existing model that is sensitive to the condition of the bicycle, the 

roadway surface, and the bicyclists’ physical characteristics. 

Next, the research team expanded this study by collecting a new naturalistic cycling dataset. Given 

that the collection of naturalistic cycling data is not achievable in the traditional vehicle approach, 

machine learning and computer vision techniques were used to construct the naturalistic dataset 

from existing video feeds. The videos used in the study come from a dataset collected in a previous 

Virginia Tech Transportation Institute study conducted in collaboration with SPIN in which 

continuous video data was recorded at a non-signalized intersection on the Virginia Tech campus. 

The research team applied existing computer vision and machine learning techniques to develop a 

comprehensive framework for the extraction of naturalistic cycling trajectories. In total, the 

proposed methodology resulted in the collection of 619 bicycle trajectories at a high level of 

precision with respect to the location, speed, and accelerations of the bicycles.  

Key words: Bicycle lateral motion, Bicycle traffic flow dynamics, Naturalistic cycling data, 

Traffic efficiency and safety 
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1. INTRODUCTION 

As a result of the ever-increasing number of vehicles on the road and the infeasibility of further 

road enlargement, congestion is becoming a major problem facing modern cities around the world. 

A popular solution adopted by policymakers to lessen traffic congestion in central downtown areas 

is to advocate cycling as a sustainable commuting mode. This is because short-distance bike 

commuting often takes less time when accounting for congestion and delays in public 

transportation and presents the most efficient way to increase the road capacity while maintaining 

existing infrastructure. Several major cities are promoting the use of bikes between public 

transportation hubs and private transportation through the implementation of bike sharing systems. 

In fact, 119 US cities had a bike sharing system in 2017. Besides being beneficial to human health, 

cycling has significant positive impacts on the environment as well, as it significantly reduces 

fossil fuel consumption and vehicle emissions.  

Despite the growing interest in bicycle use over the past decade and the urgent need to 

develop models and planning techniques for bicycle traffic operations, traffic researchers have 

barely scratched the surface of bicycle traffic flow dynamics. In fact, while vehicular traffic flow 

dynamics have been studied extensively, investigations into the use of bicycles as a mode of 

transportation remain relatively scarce in general [1-7]. The observed literature gap between 

vehicular and bicycle traffic research can be explained by the scarcity of naturalistic and 

experimental cycling data. While the physics of bicycles were investigated as early as the 1960s, 

it is only quite recently that cycling was explored from a traffic engineering perspective. It is 

noteworthy that most of those research studies investigated the interactions between bicycles, cars 

and other entities. Technically speaking, a significant portion of existing cycling research falls 

under one of two main categories. The first category involves research based on the Cellular 

Automata (CA) model that involves discretizing the time and space domain using a non-continuous 

cell grid. As an example, one can mention the work of Jiang et al. [8] who investigated the 

dispersion effect of bicycle traffic at a signalized intersection using the Cellular Automata 

approach. Another example of cycling research that used the Cellular Automata scheme is the 

work of Ren et al. [9] who proposed to simulate the lateral interactions of heterogeneous traffic 

using the bicycle spilling maneuver phenomenon. Jia et al. [2] have also proposed a CA model for 

mixed traffic involving bicycles and cars. Furthermore, Gould and Karner [6] used the CA model 

for the modeling of bicycle facility operations. Besides the CA approach, researchers have made 

use of social force models to simulate bicycle longitudinal and lateral traffic behavior. For 

instance, Qu et al. [10] proposed a social force model for the simulation of the interactions of 

electric bicycles and cars based on five different forces. Several other models [5, 11] were also 

developed using the SFM approach because of its advantages in terms of simulating dynamic 

lateral dispersion characteristics of mixed traffic. 

Regardless of the approach used, it is quite noticeable that existing cycling research is 

mostly oriented towards capturing the effect of bicycles in a mixed traffic environment rather than 

the fundamental concepts behind bicycle motion. In fact, research that deals exclusively with 

capturing bicycle traffic flow behavior is quite limited [1-3].  To illustrate the extent to which 

modeling the longitudinal motion of bicycles has been ignored historically, there is no better 
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argument than noting that the first model specifically designed to simulate the following behavior 

of bicyclists, the Necessary Deceleration Model (NDM), was only developed in 2012 [2]. Based 

on the observation that there are no major differences between the dynamics of single-file bicycle 

traffic and vehicular traffic, another approach used by researchers to model the longitudinal motion 

of bicycles consisted of capturing cyclists’ behavior by revamping certain aspects of existing car-

following models. That is the case, for example, in the Intelligent Driver Model (IDM) [4], which, 

after a simple re-parameterization, was proven to be a good descriptor of bicycle-following 

behavior [1]. In a similar fashion, the research team proposed a longitudinal motion model for 

bicycles [3] derived from the Fadhloun-Rakha (FR) car-following model to address the gap in the 

literature regarding effects that the cyclist and the road environment have on bicycle motion 

behavior  [5].  

This research effort was mainly initiated to develop a descriptive model that is capable of 

capturing the inherent non-lane-based traffic behavior characteristics of bicycles. Specifically, 

bicycle traffic is relatively unconstrained in relation to lateral motion and overtaking when 

compared to vehicular traffic, which is bounded by lane limits. With this in mind, it is quite 

noticeable that previous attempts at developing bicycle-following models were limited to capturing 

the longitudinal motion behavior of bicyclists. Moreover, all of the proposed models [1-3] are only 

valid as descriptors of bicycle motion dynamics under very specific assumptions and conditions. 

In fact, as mentioned earlier, those models were developed by applying vehicular traffic techniques 

based on the assumption that there are significant similarities between the traffic flow dynamics 

of bicycles and cars when single-file motion is considered. While those assumptions are clearly 

stated by the researchers, they result in significant limitations for the proposed models.  

As opposed to multi-lane vehicular traffic, which can be modeled by combining a car-

following model and a lane-changing model, the naturalistic behavior of congregated bicycle 

traffic is characterized by flock-like behavior. Bicycles demonstrate significantly more flexibility 

than cars with respect to executing lateral and overtaking maneuvers as well as lane striping. For 

that reason, a simplistic analogy with vehicular behavior cannot capture the lateral motion behavior 

of bicycles. Subsequently, for a model to be successful in terms of replicating lateral bicycle 

motion, it would need to demonstrate its ability to capture angular motion and directional changes 

with a high level of detail. Furthermore, unlike lane-changing models for vehicles, a lateral motion 

control strategy for bicycles would need to be unified with a longitudinal motion model in a single 

comprehensive model in order to be able to work in harmony together. 

In the first part of this study, the research team thus proposes to build on the aforementioned 

FR bicycle-following model by complementing it with a lateral motion strategy to allow for 

overtaking maneuvers. For the most part, the following strategy of the FR model remains valid for 

modeling the longitudinal motion of bicycles except under the conditions of the collision 

avoidance strategy in order to allow for overtaking when possible. The biggest challenge that faced 

the research team in this phase mostly related to choosing an adequate strategy that would result 

in a gradual change of the angular motion while overtaking. A successful strategy would also need 

to be sensitive to several parameters in order to induce a certain degree of randomization in its 

outputs. 
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Next, given that most existing cycling datasets were collected in an experimental setting in 

which the naturalistic characteristics of bicyclists were not fully captured, the research team 

worked on expanding this study by collecting a new naturalistic cycling dataset. Specifically, the 

second part of this report describes the collection of naturalistic cycling data from video feeds for 

use in different mobility applications. To achieve this, the research team first applied computer 

vision, machine learning, and data reduction techniques to a video dataset in order to identify and 

extract bicycle trips from the videos. The selected video dataset is derived from a previous Virginia 

Tech Transportation Institute study conducted in collaboration with SPIN in which continuous 

video data at a non-signalized intersection at the Virginia Tech campus was collected. Next, using 

the results of a high-precision surveying campaign of the observed area, the collected trajectories 

were projected in the Northing-Easting coordinate system allowing for the determination of the 

actual locations, speeds, and accelerations of the bicycles at a high level of precision. This effort 

resulted in the collection of 619 bicycle trajectories. 

The contribution of this study is significant for the research community as it is the first of 

its kind to propose a dynamics-based longitudinal and lateral motion model for bicycles that works 

for both constrained and unconstrained conditions. Not only that, given the choice of the FR-model 

as the longitudinal module, the proposed model captures bicyclist behavior variability. That makes 

it the only existing model to be sensitive to factors related to the bicyclists’ physical characteristics, 

such as age, gender, size and stamina as well as roadway conditions and bicycle characteristics. 

The research team acknowledges the limitations of this study, as bicycle behavior is more 

complicated than assumed herein. Despite that, the contribution of this study remains significant, 

as it constitutes a necessary first step towards the development of a comprehensive two-

dimensional model that is descriptive of empirical bicycle motion behavior. Another noteworthy 

contribution of this study relates to the collected naturalistic cycling dataset, which we expect to 

be beneficial to the research community for use in different mobility applications. 

The report will begin by presenting a comprehensive overview of the Fadhloun-Rakha 

model variations for both vehicles and bicycles, which will serve as the foundation of the proposed 

model. After that, the methodology used to achieve the formulation of the proposed lateral model 

module is described. The research team will study the possibility of controlling the angular motion 

of bicycles by investigating the interactions between certain deterministic and dynamic elliptic 

areas that are defined around the bicycles. The formulation of the proposed lateral module could 

be cast as a multi-step algorithmic process rather than a mathematical expression as observed in 

typical motion models. The performance and adequacy of the resulting model as a descriptor of 

bicycle longitudinal and lateral motion is then assessed using some basic scenarios. Thereafter, the 

report provides a detailed description of the different methodologies and techniques involved in 

the extraction of the naturalistic cycling trajectories from the video feeds. Finally, the conclusions 

of the project are presented. 

2. THE FADHLOUN-RAKHA MODEL 

Given that the FR-model was initially developed as a car-following model before being adapted 

to the motion of bicycles, we will provide a description that covers the two variations of the model. 
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2.1. The Fadhloun-Rakha Car-Following Model 

One of the simplest car-following strategies entails following the lead vehicle at a constant 

headway, which is typically taken equal to the driver perception-reaction time 𝑇, as illustrated in 

Equation 1. This model is also known as the Pipes or GM-1 model [6-8]. This time headway 

ensures that the subject vehicle 𝑛 follows its leader at a safe distance in order to avoid a collision 

under steady-state conditions (i.e. when both vehicles are traveling at the same constant velocity 

and assuming that the subject vehicle’s deceleration maneuver starts 𝑇 seconds after the lead 

vehicle decelerates).  

 �̃�𝑛 = 𝑠𝑗 + 𝑇𝑣𝑛 (1) 

In the context of car-following modeling, Van Aerde [9] and Van Aerde and Rakha [10] 

proposed a more general formulation that reflects empirical driver behavior better than other 

models. This formulation combines the Pipes (Equation 1) and the Greenshields models to 

generate a more general formulation [11-13], presented in Equation 2. 

 �̃�𝑛 = 𝑐1 +
𝑐2

(𝑣𝑓 − 𝑣𝑛)
+ 𝑐3𝑣𝑛 (2) 

Here, 𝑐1, 𝑐2, and 𝑐3 are model coefficients that can be computed using key roadway traffic 

stream parameters (Equation 3) [11], namely: the free-flow speed, 𝑣𝑓; the speed-at-capacity, 𝑣𝑐; 

the roadway capacity, 𝑞𝑐; and the roadway jam density, 𝑘𝑗 (the inverse of the jam density spacing, 

𝑠𝑗).  

 

𝑐1 = 
𝑣𝑓

𝑘𝑗𝑣𝑐
2 (2𝑣𝑐 − 𝑣𝑓); 

𝑐2 =
𝑣𝑓

𝑘𝑗𝑣𝑐2
(𝑣𝑓 − 𝑣𝑐)

2
; 

𝑐3 =
1

𝑞𝑐
−

𝑣𝑓

𝑘𝑗𝑣𝑐2
 

(3) 

A slight modification is applied to the expression of the steady-state model presented in 

Equation 2 when the lead vehicle is traveling at a lower velocity than the following vehicle (non-

steady-state conditions). In those specific scenarios, a safety distance margin is considered in 

addition to the steady-state spacing as shown in Equation 4. The additional term is computed as 

the braking distance needed for the follower to decrease its speed to that of the leader at a 

deceleration level d (d positive in the equation). The purpose of the desired safe following spacing 

is to allow the following driver to drive at a distance greater than the steady-state spacing when 

the vehicle ahead of it is driving at a lower speed. It is noteworthy that the additional term is 

formulated such that it is only active when the following vehicle is approaching the leading vehicle. 

Otherwise, it is equal to zero which leads back to Equation 2. 

 �̃�𝑛 = max(𝑐1 +
𝑐2

(𝑣𝑓 − 𝑣𝑛)
+ 𝑐3𝑣𝑛 +

𝑣𝑛
2 − 𝑣𝑛−1

2 +√(𝑣𝑛2 − 𝑣𝑛−1
2 )2

4𝑑
, 𝑠𝑗) (4) 
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Finally, the vehicle acceleration behavior is governed by vehicle dynamics to ensure that 

vehicle accelerations are realistic, as demonstrated in Equation 5. 

𝑎𝑚𝑎𝑥 =
min (

𝛽𝜂𝑑𝑃𝑛
𝑣𝑛

, 𝑚𝑡𝑎𝑔𝜇) −
𝜌𝐶𝑑𝐶ℎ𝐴𝑓𝑣𝑛

2

2 −𝑚𝑔𝐶𝑟0(𝐶𝑟1𝑣𝑛 + 𝐶𝑟2) − 𝑚𝑔𝐺

𝑚
 

(5) 

Rakha and Lucic [14] introduced the 𝛽 factor in order to account for the gearshift impacts 

when trucks are accelerating at low speeds. This factor is set to 1.0 for light-duty vehicles [15]. 

Other parameter definitions are: 𝜂𝑑 is the driveline efficiency (unitless); 𝑃 is the vehicle power 

(W); 𝑚𝑡𝑎 is the mass of the vehicle on the tractive axle (kg); 𝑔 is the gravitational acceleration 

(9.8067 m/s2); 𝜇 is the coefficient of road adhesion or the coefficient of friction (unitless); 𝜌 is the 

air density at sea level and a temperature of 15°C (1.2256 kg/m3); 𝐶𝑑 is the vehicle drag coefficient 

(unitless), typically 0.30; 𝐶ℎ is the altitude correction factor equal to 1-0.000085h, where ℎ is the 

altitude in meters (unitless); 𝐴𝑓 is the vehicle frontal area (m2), typically 0.85 multiplied by the 

height and width of the vehicle; 𝐶𝑟0 is a rolling resistance constant that varies as a function of the 

pavement type and condition (unitless); 𝐶𝑟1 is the second rolling resistance constant (h/km); 𝐶𝑟2 

is the third rolling resistance constant (unitless); 𝑚 is the total vehicle mass (kg); and 𝐺 is the 

roadway grade (unitless). 

To capture the driver input, the 𝑓𝑝 factor is introduced, which ranges between 0.0 and 1.0. 

The final FR model formulation, which considers deceleration to avoid a collision with a slower 

traveling leader, is demonstrated in Equation 6. This equation includes two terms. The first term 

is the acceleration term while the second term is the deceleration term. Both terms ensure that the 

following vehicle does not collide with its leader. 

 𝑎𝑛 = 𝑓𝑝𝑎𝑚𝑎𝑥 −
[𝑣𝑛
2 − 𝑣𝑛−1

2 +√(𝑣𝑛2 − 𝑣𝑛−1
2 )2]

2

16(𝑑𝑑𝑒𝑠 − 𝑔𝐺)(𝑠𝑛 − 𝑠𝑗)
2  (6) 

Here 𝑓𝑝 is computed using Equation 7 where 𝑋𝑛 is calculated using Equation 8. 

 𝑓𝑝 = 𝑒−𝑔1𝑋𝑛(1 − 𝑋𝑛
𝑔2𝑒𝑔2(1−𝑋𝑛))

𝑔3
 (7) 

 𝑋𝑛 =
min(�̃�𝑛, �̃�𝑛((1 − 𝛼)𝑣𝑓))

min(𝑠𝑛, �̃�𝑛((1 − 𝛼)𝑣𝑓))
∙
𝑣𝑛
�̃�𝑛

 (8) 

Here �̃�𝑛 is the desired spacing for the current speed (computed using Equation 4); �̃�𝑛 is the 

desired speed for the current spacing (which is computed by solving for the driver’s desired speed 

based on its current spacing using Equation 4); 𝛼 is the percentile of 𝑣𝑓 (suggested to be 2.5%); 

𝑑𝑑𝑒𝑠 is the desired deceleration level; 𝑔1, 𝑔2, and 𝑔3 are model parameters that are calibrated to a 

specific driver, and model the driver power input through the application of the gas pedal. 

In order to ensure that the parameters (𝑔1, 𝑔2, and 𝑔3) result in a minimal maximum value 

of fp in the deceleration domain, an iterative procedure was developed. The iterative procedure, 

presented in Equation 9, is only approximate and converges relatively fast (within four to five 
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iterations) to the location of the maximum of fp, which is then verified to be below a threshold ε 

(for instance, ε = 0.1). By doing so, it is decided whether the chosen values for the 𝑔1, 𝑔2, and 𝑔3 

parameters are accepted or rejected. Of course, this procedure was only adopted after ensuring that 

the number of the different combinations of 𝑔1, 𝑔2, and 𝑔3 that would result in 𝑓𝑝(𝑋𝑘→𝑖𝑛𝑓) <  𝜀 is 

significant. It is worth clarifying why this additional step was needed given that a simple binary 

function would have been sufficient. In fact, this step is necessary in order to make the model 

computationally friendly as it significantly reduces the feasible region for the model parameters 

without major repercussions on the model performance. In fact, the defined feasible region for the 

variables is big enough to allow the model’s flexibility and adaptability under different scenarios.    

 

{
 
 

 
 𝑋0 = 3(−1 + √2ln(3))

𝑋𝑘+1 = 3 [−1 + √2ln(3 [1 +
𝑔2𝑔3
𝑔1

(1 −
1

𝑋𝑘
)]

1
𝑔2⁄

) ]
 

(9) 

 

Finally, three noise variables were added to the model formulation in order to capture the 

perception and control inaccuracies of the drivers. The first two signals attempt to model the 

perception errors in estimating the leader’s speed and the gap distance separating the two vehicles. 

They consist of two Wiener processes that are incorporated in the model formulation as presented 

in Equations 10 and 11. On the one hand, Equation 10 emulates the driver’s inability to have an 

exact estimation of the speed of the leading vehicle. On the other hand, Equation 11 simulates the 

error committed while estimating the spacing separating them. Additionally, the white noise signal 

presented in Equation 12 is added to capture the control errors during the acceleration and 

deceleration maneuvers. The compounding effect of these three signals makes the model output 

more representative of human behavior. The model output is computed as the sum of Equation 12 

and Equation 6 in which 𝑢�̌�(𝑡) and 𝑠𝑛+1̌(𝑡) are used instead of 𝑢𝑛 and 𝑠𝑛+1. 

 
{
𝑢𝑛−1̌(𝑡) =  𝑢𝑛−1(𝑡 − Δ𝑡) − 0.01(𝑠𝑛 − 𝑠𝑗) (𝑒

−0.01.𝑊𝑙(𝑡 − Δ𝑡) + √0.02. 𝛮(0, 1))

𝑊𝑙(1) =  𝛮(0, 1)
 

 

 

(10) 

 

 
{𝑠�̌�(𝑡) = 𝑠𝑛(𝑡 − Δ𝑡) × 𝑒

0.1(𝑒−0.01.𝑊𝑠(𝑡−Δ𝑡)+√0.02.𝛮(0,1))

𝑊𝑠(1) =  𝛮(0, 1)
 

 

(11) 

 

                        �̌�𝑛(𝑡) = 𝑁(0, 0.25)          (12) 

2.2. Fadhloun-Rakha Bicycle-Following Model 

For the most part, the car-following strategy of the FR-model remains valid for modeling the 

longitudinal single-file motion of bicycles. Specifically, the functions governing collision 

avoidance, steady state behavior, and human behavior modeling would have the same functional 

forms. For the aforementioned functions, the differences between vehicular traffic and bicycle 
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traffic would be expressed in the adopted values of their different parameters. The latter is not the 

case for the vehicle dynamics model [16], which requires the implementation of structural 

modifications in order to make it descriptive of the maximum acceleration behavior of bicycles. 

The needed modifications [3] implemented at the level of the vehicle-dynamics model to make it 

representative of longitudinal bicycle traffic are summarized in TABLE 1. 

TABLE 1 Summary of the dynamics model for bicycles and cars[17] 

 Bicycles  Cars 

Tractive 

Force 

min (𝜂𝑒𝑓𝑓𝜂𝑔𝑒𝑎𝑟𝑠
𝑚𝑐𝑦𝑐𝑙𝑖𝑠𝑡𝑃𝑓𝑡𝑝

𝑣𝑛
, 𝑚𝑡𝑎𝑔𝜇)  min (

𝛽𝜂𝑑𝑃𝑛

𝑣𝑛
, 𝑚𝑡𝑎𝑔𝜇)  

𝜂𝑒𝑓𝑓 depends on bicycle chain   

𝜂𝑔𝑒𝑎𝑟𝑠 depends on gears and bike geometry   

𝑚𝑡𝑎 depends on center of gravity position   

Rolling 

Resistance 

𝑚𝑔𝐶𝑟𝑟  𝑚𝑔𝐶𝑟0(𝐶𝑟1𝑣𝑛 + 𝐶𝑟2)  

𝐶𝑟𝑟 depends on road type   

Aerodynamic 

Resistance 

Same formulation except: 

𝐶𝑑𝐴𝑓 depends on cyclist physique and posture on 

bike 
𝐶𝑑𝐴𝑓 depends on car shape 

Grade 

Resistance 
Same formulation 

In the above table, the power produced by the bicyclist as a result of pedaling is estimated 

as the product of the cyclist weight and the highest average power that can be sustained over a 

certain period of time, commonly known as the functional threshold power (FTP factor in W/kg). 

Understandably, the FTP factor depends on several variables such as gender, stamina, and the time 

interval as shown in TABLE 2. For instance, a male cyclist in good shape is able to generate an 

average of 3.91 W/kg over a 1-hour period and a higher average of 8.28 W/kg over a 1-minute 

period. For a female cyclist in the same shape, these values decrease slightly to 3.39 W/kg and 

6.75 W/kg over the same time periods. Finally, in order to account for the losses incurred while 

the pedaling power is transmitted to the rear wheel, several efficiency factors are applied. These 

factors attempt to model the effect of the bicycle gears and the friction at the level of the bicycle 

chain. 



 
 

 

Two-Dimensional Modeling of Bicycle Behavior 

13 
 

TABLE 2 Maximal power outputs for different cyclist categories [18] 

Bicyclist Condition 
Male Female 

1 min 5 min 1 hour 1 min 5 min 1 hour 

World Class 11.50 7.60 6.40 9.29 6.61 5.69 

Exceptional 10.35 6.57 5.51 8.38 5.68 4.87 

Excellent 9.66 5.95 4.98 7.84 5.13 4.38 

Very good 8.97 5.33 4.44 7.3 4.57 3.88 

Good 8.28 4.70 3.91 6.75 4.02 3.39 

Moderate 7.48 3.98 3.29 6.12 3.37 2.82 

Fair 6.79 3.36 2.75 5.57 2.82 2.32 

Untrained 5.87 2.53 2.04 4.85 2.07 1.67 

Through the reconfiguration of vehicle-related input variables and the integration of new 

parameters that replicate the characteristics of bicycle/bicyclist system, the suitability of the 

resulting bicycle following model was validated in both constrained and unconstrained conditions 

using experimental data. The main benefit of the model lies in its robustness and its ability to 

model bicyclist behavior variability. In fact, the proposed model is the only existing model that is 

sensitive to bicyclists’ physical characteristics and roadway surface conditions.  

3. LATERAL MODEL FORMULATION 

In the first part of this project, the FR bicycle-following model was used as the foundation to 

develop a two-dimensional motion model that allows lateral movements and overtaking. The 

following section provides a step-by-step process used to implement the proposed lateral module. 

After that, the performance of the model is illustrated using some basic scenarios. 

3.1. Model Formulation 

Step 1 

The first step of the proposed methodology defines three elliptic regions around the bicycle that 

will be used in the following stages of the algorithm for the determination of the angular motion 

of the bicycles. FIGURE 1 presents a schematic view of the defined ellipses, which have the 

following characteristics: 

• View zone region: As its name connotes, the biggest half ellipse is used to define the view 

zone of the bicyclist. Only objects/bicycles that are present within this zone have an 

influence on the subject entity for which the calculations are being made. The constructed 

list of neighboring bicycles is then used to investigate the bike’s surroundings and find 

the most likely longitudinal leader along with any potential lateral co-riders that would 
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obstruct desired overtaking maneuvers by the subject bicycle. Alternatively, if no bikes 

are present within that region, the subject bicycle will be considered a leader and behave 

as such. One might argue here that a simpler optimization technique, such as the k-d tree 

algorithm, could have easily achieved that objective. While that is mostly true, the 

research team opted to use the proposed methodology because of its adaptability and its 

flexibility in relation to changing the view zone area by controlling the major and minor 

radii of the ellipse. For the remainder of this study, the ellipse radii Rv and rv will be set to 

15m and 2m respectively.   

  

• Steady-state zone region: The definition of this semi-elliptic region plays a fundamental 

role in the proposed model and its stability. The area of this ellipse varies at every time 

step as its major radius Rss is a function of the steady-state spacing of the Van Aerde 

steady-state traffic stream model, making it sensitive to both the speed vn and the 

roadway characteristics. The value of the parameter Rss is calculated as presented in 

Equation 13.  In the equation, mss designates a steady-state margin factor that is greater 

than 1. The main purpose of this parameter is to allow the cyclist to look at the area 

beyond the steady-state spacing in order to investigate any need for lateral motion before 

getting too close to the leader. In other words, the margin induced by mss aims at ensuring 

the initiation of any necessary overtaking maneuver before the collision avoidance 

strategy kicks in. In what follows, mss will be set to 1.25, and the minor radius of the 

ellipse rss to 0.75m.  

 𝑅𝑠𝑠 = 𝑚𝑠𝑠 (𝑐1 +
𝑐2

(𝑣𝑓 − 𝑣𝑛)
+ 𝑐3𝑣𝑛) (13) 

 

• Safety zone region: Put simply, this area plays the same role as the spacing at jam-density 

in longitudinal motion models. The ellipse represents the area occupied by the bicycle 

and the rider that is supplemented by a minimum safety margin in the two-dimensional 

space. In that regard, the major radius Rs is set to be consistent with longitudinal 

following models as expressed in Equation 14.  

 𝑅𝑠 = 𝑠𝑗 −
𝑙𝑛
2

 (14) 
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FIGURE 1 A schematic view of the different regions used in the proposed model 

Step 2 

Here, the core component of the lateral control strategy is developed. Specifically, the main 

purpose of this step is to determine the angular motion behavior of the subject bicycle at the next 

time step based on the current system status. The output consists of the angle θn, which reflects the 

bicycle heading. The biggest challenge at this stage was ensuring that the determination of the 

angle θn is the result of a dynamic and stochastic procedure. The randomness induced by the model 

stochasticity would make it more adaptable and tunable to naturalistic bicycle behavior. 

Technically speaking, the proposed methodology is innovative in that it makes use of the 

intersection of the steady-state zone region of the following bicycle and the safety zone region of 

its leader to determine the angular motion parameter θn. The mathematical expression of θn is 

shown in Equation 15-17. 

 𝜃𝑛 = 𝑚𝑎𝑥(𝜃1, 𝜃2) (15) 

 𝜃1 = 𝑎𝑡𝑎𝑛 (
𝑦𝑃1 − 𝑦𝑛

𝑥𝑃1 − 𝑥𝑛 −
𝑙𝑛
2

) (16) 
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 𝜃2 = 𝑎𝑡𝑎𝑛 (
𝑦𝑃2 − 𝑦𝑛

𝑥𝑃2 − 𝑥𝑛 −
𝑙𝑛
2

) (17) 

Where xn and yn denote the longitudinal and lateral positions of the following bicycle 

respectively, and xP1, yP1, xP2, and yP2 are the coordinates of the intersection points between the 

two aforementioned ellipses. 

Step 3 

The factor θn is not the only parameter responsible for the angular motion in the proposed lateral 

control strategy. In fact, it needs to be complemented by another variable that is representative of 

the feasibility of lateral motion at the specified time step. In that regard, we introduce λn as a trinary 

variable with states represented by the numbers -1, 0, or 1. The product λn.θn is then used as the 

global indicator of the rate of angular motion and its direction. The associated three-level logic to 

determine λn is as follows: 

• λn  = 1: This value indicates the feasibility of a lateral maneuver to the left. To ascertain 

that, we verify that there are no obstacles, whether in relation to the road geometry or 

other bicycles surrounding the subject bicycle that would stop it from moving laterally to 

the left. 

• λn  = -1: If left movements are deemed impossible, the possibility of initiating a right 

lateral maneuver is investigated in the same manner described above. 

• λn  = 0: If it is determined that lateral motion cannot be achieved in both directions, then 

setting λn to zero would ensure that the following bicycle continues its longitudinal 

motion. That would result in it continuously closing the gap separating it from its leader 

until the collision avoidance strategy is activated. The adopted strategy is fundamentally 

similar to that used in social force models where certain repulsive forces are used to 

achieve a similar objective. 

 

Step 4 

Once all the parameters responsible for lateral motion are determined, we proceed with calculating 

the acceleration using the expression of the FR bicycle-following model described in the 

background section. For illustration purposes in what follows, we consider a typical scenario in 

which a bicyclist is traveling on a dry and flat asphalt road. This would result in the values of the 

grade 𝐺, the rolling coefficient 𝐶𝑟𝑟, and the friction coefficient 𝜇 to be equal to 0, 0.004, and 0.8 

respectively. For the remaining variables, the following assumptions are used again:  

• The cyclist is an untrained male (𝑃𝑓𝑡𝑝=2.04 W/kg),  

• The bicycle weighs 8 kg,  

• The proportion of the total mass on the rear axle equals 0.60,  

• The aerodynamics coefficients are such that 𝐶𝑑𝐴𝑓 = 0.4,  

• The desired deceleration level ddes is equal to 1.5 m/s2, 

• The total efficiency factor 𝜂𝑒𝑓𝑓𝜂𝑔𝑒𝑎𝑟𝑠 = 0.62.  
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Considering the above along with a cyclist weight of 75 kg, the computation of the 

acceleration using the FR model would only require the values of the road characteristics (uf, uc, 

qc, kj) along with those of the three calibration parameters (g1, g2, g3). 

Step 5 

At this level, the acceleration vector of the following bicycle is completely defined in terms of 

direction and magnitude. Subsequently, we can proceed with updating the speed vector along with 

both the lateral and longitudinal speeds and positions as presented in Equations 18-20. 

 

 𝑣𝑛(𝑡) = 𝑣𝑛(𝑡 − ∆𝑡) + 𝑎𝑛(𝑡). ∆𝑡 (18) 

 𝑥𝑛(𝑡) = 𝑥𝑛(𝑡 − ∆𝑡) + 𝑣𝑛(𝑡)𝑐𝑜𝑠(𝜆𝑛(𝑡). 𝜃𝑛(𝑡)). ∆𝑡 (19) 

 𝑦𝑛(𝑡) = 𝑦𝑛(𝑡 − ∆𝑡) + 𝑣𝑛(𝑡)𝑠𝑖𝑛(𝜆𝑛(𝑡). 𝜃𝑛(𝑡)). ∆𝑡 (20) 

Step 6 

Lastly, the final step of the algorithm deals with the way in which the subject bicycle returns to its 

original lane (or around its initial lateral position) once it overtakes its original leader. At this stage, 

the research team opted to use a behavior symmetrical to that used by the subject bicycle at the 

start of the passing maneuver. 

Mathematically, that is achieved through memorizing the opposite of the angular motion 

parameters θn, specific to a certain overtaking maneuver from start to end, in a vector variable Γn 

in a reversed order as defined in Equation 21. 

 𝛤𝑛(𝜃𝑛) = −

[
 
 
 
 
 
 

𝜃𝑛(𝑡𝑒𝑛𝑑)

𝜃𝑛(𝑡𝑒𝑛𝑑 − 𝛥𝑡)

𝜃𝑛(𝑡𝑒𝑛𝑑 − 2𝛥𝑡)
……

𝜃𝑛(𝑡𝑖𝑛𝑖 + 𝛥𝑡)

𝜃𝑛(𝑡𝑖𝑛𝑖) ]
 
 
 
 
 
 

 (21) 

Where tini is the time step at which the concerned overtaking maneuver started and tend presents the 

final time step after which the initiated lateral motion is no longer needed as the leading bicycle is 

no longer obstructing the longitudinal motion of the follower. 

The collected values in Γn are used in a sequential order to define the angular motion of the 

overtaking bicycle once the condition presented in Equation 22 is met. This condition verifies that 

the rear of the subject bicycle is past the safety zone region of the bicycle it is overtaking. Finally, 

we note that given the possibility of overtaking, the algorithm needs to be updated at every time 

step in order to identify the current ranking of the different bicycles in the queue. 

 𝑥𝑛 − 𝑙𝑛  >  𝑥𝑛−1 +𝑅𝑠 (22) 
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A final remark regarding the above equation relates to the indexing choice of xn and xn-1. 

Even though at the time Equation 22 becomes valid bicycle n is actually the leader of bicycle n-1, 

we chose the above indexing to be consistent with the other equations and to avoid any confusion.   

3.2. Model Evaluation 

To demonstrate the model’s performance, the study implements the proposed algorithm for 

different basic case scenarios. In each of the scenarios, all the model parameters except for the 

geometry of the road were set to a fixed value. Moreover, the speed of the leading bicycle was set 

to a constant low value in order to allow overtaking conditions to arise. The chosen scenarios 

involve only a single follower to the leading slow bicycle. That would allow for a perfect 

visualization of the algorithm’s behavior and its generated trajectories. In fact, a higher number of 

followers would result in significant interactions between the bicycles, making it harder to 

understand the actual model logic. The following case scenarios are considered: 

• Scenario 1: The road geometry would only allow overtaking to the left side as shown in 

FIGURE 2.a. This scenario is equivalent to the case in which overtaking is feasible in 

both directions. This is because the left side was prioritized during the computation of the 

directional parameter λn. 

• Scenario 2: The road has borders on both sides, making overtaking impossible even if 

desired by the following bicycle as illustrated in FIGURE 2.b. 

FIGURE 2.a demonstrates the ability of the proposed lateral control strategy to overtake a 

leading vehicle traveling at a low speed while responding to the constraint imposed by the road 

border. While it might be argued that the proposed model is only tentative and does not necessarily 

represent empirical bicycle behavior, this is partially negated by the information presented in 

FIGURE 2.b. In fact, the model output for the second scenario is merely an extension of the 

original FR longitudinal motion model, which was already validated using longitudinal bicycle 

data and was proven to replicate observed empirical behavior effectively. While lateral motion 

was triggered in the beginning, it was quickly stopped, and the following bicycle continued 

following its leader longitudinally. Furthermore, FIGURE 2.b demonstrates that even though the 

lateral and longitudinal modules interact with each other, they are implemented separately from 

one another. That opens the door to other researchers to implement any longitudinal motion logic 

they see fit for their purposes. 
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FIGURE 2 Projection of the simulated trajectories on the two-dimensional domain for: a) 
Scenario 1; b) Scenario 2 

4. NATURALISTIC DATA COLLECTION AND MODEL VALIDATION 

The second part of this project describes the different methodologies and techniques involved in 

extracting naturalistic cycling trajectories from existing video feeds. This is significant because 

most existing cycling datasets are experimental and were collected in a controlled environment 

under very specific conditions (single-file motion, no overtaking). 

Due to the proliferation of machine learning and computer vision techniques, it is becoming 

feasible to acquire reliable naturalistic traffic data in a cheap and efficient manner from video 

datasets. This is especially true in the case of bicycles as they are not as instrumented as cars, 

which would not allow the capture of their full surroundings in the context of a naturalistic data 

collection study. In the case of this study, the complete video dataset is the result of a previous 

Virginia Tech Transportation Institute study conducted in collaboration with SPIN in which 

continuous video data at several fixed locations at the Virginia Tech campus was collected over a 

seven-month period. For the purpose of this research, only a portion of the above dataset from a 

single location is used. The selected dataset was collected over 55 days between the months of 

September and December 2019 using a roof-mounted high-definition camera facing a non-

signalized three-way stop intersection. The selected dataset includes approximately 810 hours of 

3720 x 1728 pixels videos recorded at a frequency of 30 Hz. It is worth mentioning that the ultimate 

purpose of this task is to collect the naturalistic data at a high level of detail. From a machine 

learning and computer vision perspective, we are using existing tools to achieve our objective in 

the simplest way possible. 

4.1. Video Processing 

The first step of this research effort involves the identification of bicycle events from the different 

videos. Given the large size of the video feed, manual data reduction was considered impractical 

as it would be a costly and lengthy process. Instead, the research team opted for an automated 
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method that makes use of existing object detection techniques. Specifically, a two-step object-

detection algorithm was developed. 

The first step of the proposed algorithm uses a cascade detector based on the histograms of 

oriented gradients (HOG) with 11 stages to detect regions of interest in the video frames that might 

be bicycles. The number of stages used to train the detector is not random. In fact, the research 

team initially used a database composed of 400 positive images and 900 negative images to train 

detectors with different numbers of stages (5, 7, 9, 11, and 13) and a false alarm rate fixed at 2.5%. 

The number of training images and stages were purposefully set relatively low in order to ensure 

a quick training process. The focus of the research team at this point was to ensure that the number 

of stages of the detector is high enough to detect a significant percentage of true positives 

regardless of the number of false positives as these would be addressed and eliminated later. Next, 

the trained detectors were run on a one-hour video from the database at 5-second intervals to 

quantify their performance. The outputs from this step consisted of bounded areas that highlight 

regions that might be inclusive of bicycles in the examined video frame, as illustrated in FIGURE 

3. 

 

FIGURE 3 Sample output of HOG detectors 

The following metrics were used to evaluate each of the detectors: 

• The number of true positives: These refer to the bounded areas identified correctly by the 

detectors in that they contain a bicycle. 

• The number of false positives: These correspond to the bounded areas identified 

wrongfully by the detectors. 

• The number of false negatives: These account for the cases in which a bicycle was 

present in the video frame without being detected. 

It is noteworthy that all the detectors, regardless of the number of stages, were able to 

identify 42 out of the 44 bicycle trips. However, a deeper look into the results highlighted the 

significant differences between the metrics listed above. FIGURE 4 plots the variation of the true 

positives (FIGURE 4.a), false positives (FIGURE 4.b), and false negatives (FIGURE 4.c) against 
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the number of stages used to train the detector. The main revelation from the figures is that the 

total number of false positives significantly decreases as the number of training stages increases. 

However, the observed decrease is also accompanied by a decrease in the number of true positives 

and an increase of the number of false negatives. Based on the observed patterns, it is evident that 

the detector with 11 stages is the best among those investigated albeit with a relatively high number 

of false positives. To address that issue, the bicycle-detection algorithm was complemented with 

another technique to reduce false detections. 

  

 

FIGURE 4 Variation of the detector metrics as a function of the number of training stages a) 
True positives; b) False positives; c) False negatives 

In the second stage of the algorithm, the highlighted areas of interest are selected for further 

examination using a semantic segmentation network that attempts to classify every pixel in them 

and assign them to different classes. For that purpose, the research team selected an existing pre-

trained DeepLabv3+ network [19], which is a convolutional neural network (CNN) designed for 

semantic image segmentation. The network is available for download at the Mathworks website 
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and was trained using the CamVid dataset [20] from the University of Cambridge. The dataset 

consists of a collection of street-level images that are segmented at the pixel-level using 32 

semantic classes (such as bicyclist, pedestrian, and car) as shown in FIGURE 5. 

 

FIGURE 5 Sample image from the CamVid dataset 

As mentioned earlier, the main reason behind the semantic segmentation phase is to 

eliminate the false positives that were detected by the HOG detector in the previous step. This was 

achieved by comparing the number of pixels that were classified as bicyclist and the total number 

of pixels in the investigated area. If the ratio between the two values is greater than a set threshold 

of 5% in at least one of the highlighted regions, the examined video frame was saved for manual 

confirmation. Otherwise, it was rejected (FIGURE 6). The application of the semantic 

segmentation algorithm over the areas identified by the HOG detector proved to be quite 

successful. Using the two algorithms together, the number of frames selected for further 

investigation decreased from 683 frames to 89 frames without any decrease in the number of 

bicycles detected. The algorithm was able to accurately detect 42 out of the existing 44 bicycle 

events (95.5%). 

With the algorithms ready, the different videos of the database were processed using the 

HOG detector in conjunction with the semantic segmentation at 5-second intervals. This is mainly 

due to the heavy computational toll of those algorithms. However, that did not have much effect 

on the accuracy of the algorithm in bicycle detection as demonstrated earlier. Furthermore, to 

further illustrate the performance of the algorithm in relation to false positives, it was run on the 

4-hour video between 6AM and 10AM on Christmas day, which is a period in which no bicycles 

were present. The algorithm saved only 21 frames for further investigation out of the 2880 frames 

examined (< 1%). 
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FIGURE 6 Sample output after semantic segmentation 

This step resulted in an image database in which the video frames selected for further 

investigation were saved separately with information pertaining to the date, time, and timestamps 

in their respective videos. Through a manual data reduction process, the resulting database was 

investigated to identify the different cycling trips and note their start and end times. The result of 

this process was the identification of 2259 cycling events. Out of those, a total of 619 cycling 

events were selected to be processed in the next step. Most of the selected trips have a duration 

between 10 and 20 seconds with an average of 16.1 seconds and a median of 14.0 seconds. 

4.2. Trajectory Extraction 

With the start and end times of the different trips known, the corresponding video sections were 

isolated and prepared for the next step, which relates to the extraction of the trajectories in the 

video pixel domain.  

There are two approaches that can be used to achieve the latter. The first approach is quite 

straightforward but is only possible for a relatively low number of trajectories. For each of the 

trajectories, a simple script is used to extract the frames from the video at 0.2 seconds allowing for 

the user to manually click on the position of the bicycle and the vehicles interacting with it. Two 

moving perpendicular lines are implemented to help a data reductionist detect the intersection of 

the front of the bicycle wheel and the pavement as shown in FIGURE 7. In the background, the 

script saves the location of the clicks in the (x, y) domain of the video frames (a 3720×1728 pixel 

grid), thus collecting the trajectories for further processing. It is necessary to note here that if any 

obstructions (such as a car, a tree, or a structure) interfere with the collection of precise bicycle 

location data, the bicycle coordinates will not be collected for that specific timeframe. An 

interpolation algorithm will be used to estimate the location of the bicycle at those time steps at a 

later step. 



 
 

 

Two-Dimensional Modeling of Bicycle Behavior 

24 
 

 

FIGURE 7 Sample screenshot from the trajectory collection process 

Before moving on to the description of the next step, we would like to note that our final 

objective is to extend this work by extracting bicycle trip events that occurred over the entire seven-

month period at all 14 locations on campus. However, this would require additional automation to 

complete the trajectory extraction process. In fact, only 1.2 out of the available 49.5 terabytes of 

available videos have been used so far. Assuming, hypothetically, that a perfect proportionality 

exists between the number of bicycle trips and the size of the video database, the expected number 

of trips expected to be found in the entire video dataset would be in excess of 90,000. Even more, 

once the tasks requiring manual labor are removed, the research community would have access to 

a comprehensive automated trajectory extraction framework that can be applied to similar videos. 

In that regard, the research team is currently developing an automated tool that can extract 

the trajectories and replace the data reduction process. Without going into much detail, the 

algorithm uses the Hough transform for the detection of bicycle wheels to determine their contact 

point with the road surface. To achieve that, edge detection techniques are first used to isolate the 

bicycle trip on a black and white background as shown in FIGURE 8. After that, the Hough 

transform is used to detect the wheels as shown in FIGURE 9. However, the research team is still 

working on solving the most challenging part of this process, which deals with the fine-tuning of 

the algorithm to assign detected points to their corresponding trajectories and automatically 

exclude false positives. 
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FIGURE 8 Image filtering using edge detection techniques 

 

FIGURE 9 Detection of bicycle wheels using Hough transform 

4.3. Intersection Surveying 

In order to convert the extracted trajectories into naturalistic trajectories, a grid map overlay of 

GPS coordinates at specific locations is needed. For this, the aforementioned map allows the 

conversion of the pixel-based trajectories into distance-based trajectories using the multi-step 

algorithm described thereafter. 

To achieve the stated objective, the research team started by creating a mesh of 

approximately 400 points as shown in FIGURE 10. As the figure shows, the points are heavily 

concentrated around the edges of sidewalks and road crossings because they are the easiest to 

identify in the videos and in the field.  This is quite useful for the next step as both sidewalks and 

road crossings are frequently used by the bicyclists to complete their trips. Initial attempts to collect 

the GPS coordinates at the specified locations were made using accessible tools such as Google 
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Earth and existing GPS mobile applications. However, these attempts proved unsuccessful due to 

the small distances involved and the relative low accuracy of those tools when used in this context. 

As a result, a surveying campaign using professional high-precision tools was conducted to acquire 

the required coordinates, which are expressed in the Northing-Easting-Elevation coordinates 

system. Since the investigated area is relatively flat, the elevation data can be ignored without 

major repercussions on the results. In what follows, we will refer to the data collected in this step 

by the transform matrix. 

 

FIGURE 10 An aerial view of the surveyed area and the collection points 

4.4. Trajectory Transformation and Results 

The final step of this methodology deals with the conversion of the extracted trajectories expressed 

in the video pixel domain to actual naturalistic trajectories and the determination of speed, 

acceleration, and distances traveled. This constitutes the final product of this study and allows us 

to validate the proposed model against the resulting naturalistic bicyclist dataset. The trajectory 

transformation process is achieved using the following multi-step algorithm: 

1. A linear interpolation algorithm is initially used to complement the extracted trajectories 

with estimated values at the time steps for which the determination of the bicycle location 

was impossible due to the presence of visual obstructions. 

2. Next, the trajectories are exponentially smoothed using a smoothing factor of 0.5. The 

purpose of the exponential smoothing operation is to address the noise and the zigzag-like 

features that might be present as a result of the manual trajectory extraction process. At 

this level, the trajectories will look similar to the two sample trajectories presented in 

FIGURE 11. 

3. For each of the observations composing a trajectory, one of the closest convex hulls 

containing the observation and delimited by three points from the transform matrix is 

identified. 

4. Since we have access to the coordinates of the points defining the convex hull in both 

coordinate systems, the coordinates of the trajectory observation could be approximated 

in the Northing-Easting coordinate system using a triangulation algorithm. 
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5. Once Step 4 is completed for all the observations, the speed profile associated with the 

obtained trajectory is determined and smoothed through the application of a third order 

Savitzky–Golay filter. 

6. In a similar fashion to Step 5, the acceleration profile is obtained from the smoothed 

speed profile and smoothed using a similar Savitzky–Golay filter. 

7. Finally, the speed profile, the distance traveled, and the coordinates of the trajectory in 

the Northing-Easting coordinate system are updated backwards to account for the effect 

of the two-layer filtering that was applied. 
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FIGURE 11 Sample trajectories in the video pixel domain 

Sample results from this step are presented in FIGURE 12 and FIGURE 13. FIGURE 12 

shows the resulting trajectories in the Northing-Easting coordinate system corresponding to the 

two trajectories presented in FIGURE 11. The figure demonstrates the success of the proposed 

multi-step algorithm in conserving the shape and main features of the extracted trajectory. 
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Meanwhile, FIGURE 13 illustrates the distance traveled, speed, and acceleration profiles 

corresponding to the trajectory presented in FIGURE 11.a and FIGURE 12.a. 

 

 

FIGURE 12 Sample naturalistic trajectories after the triangulation procedure 
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FIGURE 13 Extraction of the distance traveled, speed, and acceleration profiles for a 
naturalistic trajectory a) Distance traveled; b) Speed profile; c) Acceleration profile 

Finally, the histograms of the instantaneous accelerations and speeds from all the 619 

trajectories is investigated to confirm the consistency of the obtained values with bicycle behavior. 

The results, which are plotted in FIGURE 14, show that the results are concentrated around low 

acceleration levels and speeds that are quite typical for bicyclists. Furthermore, the range of the 

observed values are physically feasible for a bicycle. With the completion of this step, the 

collection of the naturalistic cycling dataset is ready to validate the proposed model in what 

follows. 
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FIGURE 14 Histogram of the instantaneous accelerations and speeds of the aggregated 
extracted trajectories  

5. CONCLUSION 

In this project, the research team proposed a two-dimensional comprehensive model for bicycle 

motion behavior modeling. The formulation of the model is achieved by integrating a lateral 

control strategy with the Fadhloun-Rakha longitudinal motion model formulation. The developed 

lateral module makes use of new parameters that control the angular and directional motion of the 

bicycle, allowing for overtaking to occur while accounting for the bicycle/bicyclist system 

surroundings. The proposed model is the first point-mass dynamics-based model for the 

description of the longitudinal and lateral behavior of bicycles in both constrained and 

unconstrained conditions. By having the FR bicycle-following model as both the governing 

module of longitudinal behavior and a dynamic lateral module, the proposed model is able to 

model bicyclist behavior variability. Furthermore, it is the only existing model that is sensitive to  

roadway surface conditions and the bicyclist’s physical characteristics. 

Preliminary investigations of the proposed lateral module show that it is successful in terms 

of allowing lateral movements and overtaking. However, the research team is aware that the lateral 

model outputs may need further tuning to be representative of naturalistic bicycle behavior. In that 

regard, the research team would consider extending the collected naturalistic dataset by extracting 

the trajectories of the different entities interacting with the bicycles. That would give us access to 

a two-dimensional comprehensive dataset that is both inclusive of the bicycles’ trajectories as well 

as those of their surrounding entities. 

In relation to the acquisition of the naturalistic dataset, this paper described the 

development of a comprehensive framework that would allow for the collection of naturalistic 

cycling trajectories from video feeds. Even though the current naturalistic dataset is composed of 

only 619 trajectories, it will be useful to traffic researchers in several mobility applications such 

as the validation of studies investigating bicycle motion behavior. Furthermore, once this dataset 

is complemented by the trajectories of the surrounding cars, the resulting dataset will contribute to 
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a better understanding of bicyclists’ behavior around cars, leading to a better understanding of the 

interactions between bicycles and other modes of transportation. 

The research team faced two main challenges during this study. The first challenge deals 

with automating the process of extracting the bicycle trajectories from the videos through the 

detection of bicycle wheels. In fact, the number of trajectories in the resulting dataset is limited 

due to the problems encountered while trying to complete that process. Once these problems are 

addressed and the process is entirely automated, the size of the trajectory database will increase 

significantly. More importantly, the proposed methodology will be completely transferable for use 

by other researchers at different locations. The second challenge relates to the collection of the 

transform matrix needed to transform the video trajectories into actual trajectories. Due to the 

small distances involved, typical tools such as Google Maps and existing GPS applications cannot 

be used; instead, a professional surveying campaign of the observed area is needed. 
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